

10 Things
Software Developers Should
Do Every Day

— T H E P R I N C I P L E S

T R A V I S N E L S O N

31 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

Travis Nelson is a consultant, software engineer,
and architect specializing in server and client-
side development, project management, and
development practices.

He has a passion for helping developers and teams get laser focused,
communicate clearly, and build better software.

He has professional experience in marketing and graphic design, software
development instruction, and he’s fanatical about personal growth and
opportunity creation.

He also likes to speak about himself in the third person.

https://travis.io
me@travis.io

— A B O U T T H E A U T H O R

1 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

I N T R O D U C T I O N 1

O N E - S P E A K U P 2

T W O - B E A P R O B L E M S O L V E R 3

T H R E E - R E V I E W Y O U R A P P R O A C H W I T H O T H E R S 4

F O U R - T A K E E X C E L L E N T N O T E S 5

F I V E - S T A Y P L U G G E D I N A N D V I S I B L E 6

S I X - T A K E O W N E R S H I P 7

S E V E N - S O C I A L I Z E K N O W L E D G E E A R L Y A N D O F T E N 8

E I G H T - H E L P O T H E R S 9

N I N E - C O M M U N I C A T E E F F E C T I V E L Y 1 0

T E N - N E T W O R K A N D C O N N E C T W I T H O T H E R S 1 1

11 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

Being a great developer isn’t about writing code. At some level you already
know this. If you’re anything like me, though, you spend your days writing code,
but often feel disconnected from the bigger picture of why you’re writing it.

I created this guide for two reasons: First, I wanted to document some things
that I’ve seen excellent developers do. These are the highest-level technical
architects, engineers, and leads who set the bar in the best projects I’ve worked
on—in the enterprise, in successful startups, in innovative tech companies, and
in premier consulting firms. And truthfully some of these principles are ones I’ve
seen the worst examples of; in those cases the writing here is just as inspired.

Second, some of the practices here are ones I also want to improve. These are
principles I value, but some days I’m far from a shining example of any of them.
In my experience the best way to learn something is to teach it, so consider these
principles something we should all strive for, myself included.

To being your best self, and a better version of it every day.

Travis Nelson
https://travis.io

“How you do one thing is how
you do everything.”

— I N T R O D U C T I O N

21 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

Don’t sit quietly in meetings and let the most vocal team members drive the
conversation. Speak up and let your ideas be heard. Be confident in your
knowledge and know that your contributions (even bad ones) make the team
better in one way or another.

Don’t be afraid to ask stupid questions. If you don’t know something, and it’s
important that you do, inquire. If it’s not appropriate to interrupt a meeting to
get clarification on something, use a messaging tool on the side to ask someone
who knows, or make a note to get clarification later. You never know when you’ll
be called on to engage in the conversation, so remain plugged in.

Be an active part of the conversation and don’t let your ego get in the way. Not
only does it show that you care about contributing, but it shows that you’re
engaged and not just going through the motions.

When it comes to paying attention in conference calls, a wireless headset is a
game changer. Personally, I get up and walk around, because it prevents me
from doing work or getting distracted when I should be paying attention.

Staying quiet and being a fly on the wall in meetings doesn’t
help anyone—especially you. Speak your mind, ask stupid
questions, and be a part of the conversation in every meeting.

Speak Up

— O N E

31 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

No matter how boring or annoying it might be (just being honest here), part of
your job as a software developer is to understand not just the technical domain
of your project, but the business domain as well. This becomes more important
the further you advance in your career.

Your real job is to solve problems, and those problems have a direct impact on
the business and ultimately the bottom line of the company (or client). You’re a
much better developer when you understand the actual problem you’re solving.
And truthfully, having a more holistic understanding can make the work more
interesting, and give you the satisfaction of being a vital part of the project than
just a cog in the machine.

Get into the habit of understanding the impact your code changes have on the
business, as disconnected as it may seem at times. Once you learn to focus on
the value you’re working to deliver, the technical details usually fall into place
much easier.

As you mature, your knowledge of a specific language or
technology becomes less important; building software is
about solving problems, so be good at that.

Be a Problem Solver

— T W O

41 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

As you progress through your career and work on different projects, you’ll find
there are many ways to solve the same problem with code. While the end result
might be the same, there are a few things to consider in your approach when
writing a feature or bugfix. Code reviews should be part of your process, but prior
to that, a simple discussion to vet your approach in advance is always beneficial.

Is your approach performant? Other developers might have good suggestions
to avoid performance bottlenecks, or tweaks that allow your software to work
asynchronously, or better handle horizontal scaling at the infrastructure level.

Is your approach secure? Developers more familiar with security, cryptography,
or even your company’s infosec team policies might help you avoid dangerous
gaps that would allow malicious users to compromise your system.

Is your approach a good fit? If your approach doesn’t match the overall theme
used throughout your project, it may be hard for other developers to use
or update it when needed. Whether you’re writing pattern-heavy enterprise
software, or pragmatic, beta-level startup apps, your changes should blend in.

Features or bugfixes in code can be implemented several
different ways. Some ways are better than others; be open to
hearing recommendations to find the best approach.

Review Your Approach
With Others

— T H R E E

51 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

Note-taking serves two main purposes. First, keeping good, detailed notes helps
you recall things more accurately (obviously). But a much-underestimated
benefit of habitually taking notes is the relief it gives your already-full brain.

Developers have a bad habit of walking into meetings without some way to
take notes and making a lot of promises to “look into that” or “follow up with
so-and-so”. But these promises often fade into the ether if they’re not tackled
immediately after the meeting (or during it); sometimes until we’re reminded of
it days later by a manager who needs a status update.

Keeping everything in your software developer brain is impossible, so don’t
try to force it. Redirect to-dos and other notes to a notebook (or a desktop app
like Microsoft OneNote - https://onenote.com) and don’t allow them to take up
valuable space in your head—and eventually get you into trouble.

Most importantly, have a good system for reviewing your notes, making sure
nothing gets lost in the shuffle. I use and highly recommend Bullet Journaling
(https://bulletjournal.com/pages/learn), but there are other systems that might
work for you.

Most developers take too many mental notes and not enough
written ones. Build a habit of writing things down for your
reference, and for your sanity.

Take Excellent Notes

— F O U R

61 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

Anyone who’s been on a poorly-managed software team knows how easy it
can be to fade into the background and browse to the end of the Internet on
company time without anyone being the wiser.

Modern teams, however, are more in tune and fluctuations in productivity are
much more noticeable. Practices like Agile make developer contribution (and
lack of it) fully transparent, and it’s much harder to be one of those head-down
developers who’s always “really busy” but not producing anything.

Energy comes and goes, and good teams know this. But find your cadence and
try to stick to it. Communicate openly with your team, have conversations in
public channels instead of private ones, vet your ideas with other developers and
architects, and be involved in code reviews and demos.

In the short term, by being plugged in, you’ll learn more and you’ll build trust
and rapport with your colleagues. In the long term you’ll benefit your career in
unexpected ways, and you’ll build communication skills that serve you both
personally and professionally.

Gone are the days of large, poorly-managed software teams.
Modern teams (especially remote ones) require more
communication and connection; not less.

Stay Plugged In and Visible

— F I V E

71 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

It takes a strong person to accept blame for something they were responsible
for, but it takes an even stronger person to accept blame for something that they
weren’t responsible for, but could have been.

The most mature software teams are those where the source of a problem
usually unfolds with someone saying something like “I’m sorry, that was
completely my fault.” It seems easy enough, but consider how often you hear
blame directed at others. “The environment was down”, “so-and-so didn’t do his/
her job”, “I didn’t have the resources I needed.” Blame is a by-product of fear;
fear of reprimand, fear of looking stupid, fear of losing respect.

Be known as the person who won’t let things slip. Reach out to your coworkers
and make sure their needs are covered. Take an opportunity each sprint retro (or
on a schedule if you’re not part of an Agile team) to review one area where you
feel you could improve, and share it with the team if it could benefit them too.

Lastly, if you make a mistake it’s better coming from you directly, and at the
earliest opportunity. Being upfront about it reinforces trust and prevents the
embarrassment and shame of someone else discovering your mishap.

Don’t sit back and let someone else take the glory or the
blame. Be the brave one; take ownership of things good and
bad and you’ll earn both accolades and opportunities.

Take Ownership

— S I X

81 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

There’s little worse than losing an employee who holds specialized knowledge
about your projects, or who’s maintained important client relationships in your
company. The impact is highly stressful, with remaining staff working long hours
rebuilding client trust, all the while asking frustratingly basic questions they
shouldn’t have to, or even introducing bugs due to a lack of understanding.

Knowledge should be socialized constantly. Maintain a centralized tool or
repository for documentation in an easy-to-edit format like Wiki or Markdown,
and keep it up to date. New team members should be trained to reference it, and
veteran team members should review it often for accuracy.

When writing code in unfamiliar areas, reach out to others as soon as the need
arises, and do so in public forums rather than private, when appropriate. Making
these discussions visible helps ensure you don’t become a gatekeeper yourself,
and it helps others become more cross-functional.

Make a habit of commenting your code in a way that would help someone
understand its intention (not necessarily its implementation), even if they’ve
never seen it before.

Gatekeepers, those who solely hold specialized knowledge,
are painful to have and more painful to lose. Prevent
gatekeepers by fostering routine knowledge sharing.

Socialize Knowledge
Early and Often

— S E V E N

91 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

There are myriad ways to help your colleagues and intentional, helpful outreach
goes a long way—for your team, and for you personally.

Make routine contact and find ways to help your coworkers. Create automation
scripts that save time and share them with team mates who can benefit from
them. Offer your time to help solve problems, or when a fresh set of eyes might
be useful. Remember what they’re working on and check in to make sure they’re
making progress. Offer to take on tasks like writing unit tests or validating their
changes, when you have the bandwidth to do so.

It’s worth noting: whether you want to believe it or not, people are going to talk
about you when you’re not in the room. Without a good, positive precedent,
many conversations about other people end up neutral at best, and negative at
worst. We’re humans; we talk shit about one another sometimes. Investing in
others helps maintain rapport during stressful times or when you make mistakes.

Take control of your personal narrative and position yourself as dependable and
helpful, and an asset to your team.

There’s a stigma around asking for help, and many developers
hesitate to. Be a champion of supporting others; it helps your
team succeed, and the personal benefits can’t be ignored.

Help Others

— E I G H T

101 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

For much of my career I considered myself an effective online communicator,
able to understand and explain complex ideas via chat or email. Later in my
career I was put on a team that communicated mostly via Skype calls and screen
shares, and it changed the way I think about communication within teams.

In retrospect I learned that text-based communication is slow, one-sided, and
highly nuanced—largely because it removes the human element. A person’s
phrasing in a chat message might make sense to one person, confuse a second,
and outright trigger a third. Voice communication adds inflection, timing,
emotion, and conciseness that just can’t be matched in chat or email. Video
takes this a step further (though in my experience, the benefits aren’t as drastic.)

Many developers seem to be uncomfortable with the idea of “talking on the
phone”, partly because it’s a context switcher, and because it forces on-your-
feet thinking. Embrace this discomfort and push yourself to do it; as [anti] social
networks and YouTube comments drive us further away from real conversations,
be the one who prioritizes phone, video, and in-person discussion to connect
with others. The benefits are immeasurable.

Email and chat are great for archive-ready discussion, but not
always clear. Just as a picture is worth a thousand words, a
phone call or screen share is worth a thousand messages.

Communicate Effectively

— N I N E

111 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

For better or worse, much of your professional growth has to do with how well
and how often you connect with others. Your skills are important, but your
connection with others will ultimately determine your career path. Seek out
people in your organization and industry who you can help, and who can help
you keep moving in the direction of your goals.

Within your workplace, reach out and introduce yourself to architects, managers,
and other project leads, and present yourself as someone who is willing to be a
bridge for communication across (and within) teams. Outside of your workplace,
connect with everyone you can on networks like LinkedIn, Alignable, GitHub, and
even more personal social networks like Facebook and Twitter.

Always dress professionally, and here’s a tip: keep your profile photo up to date
(Skype, Slack, email, etc.) with one that actually looks like you—professional and
recognizable. Ideally, people you communicate with online before meeting you
in person should recognize you immediately.

Lastly, any time someone helps you, be sure to reach out and thank them.

The most well-rounded and most sought-after developers are
those who invest in themselves—and not just to improve their
technical knowledge and skills.

Network and Connect
With Others

— T E N

121 0 T H I N G S S O F T W A R E D E V E L O P E R S S H O U L D D O E V E R Y D A Y

For information about 1:1 Developer Coaching, visit:
https://travis.io/coaching/

Want to hire me to help make your project a success? Check out:
https://travis.io/hire-me/

Connect with me on LinkedIn:
https://www.linkedin.com/in/travisneilnelson/

Thank you for taking the time to read this guide. To learn more
about me and what I do, see the links below.

— T H A N K Y O U

